Recently, the growing success of new wireless applications and services has led to overcrowded licensed bands, inducing the governmental regulatory agencies to consider more flexible strategies to improve the utilization of the radio spectrum. To this end, cognitive radio represents a promising technology since it allows to exploit the unused radio resources. In this context, the spectrum sensing task is one of the most challenging issues faced by a cognitive radio. It consists of an analysis of the radio environment to detect unused resources which can be exploited by cognitive radios. In this paper, three different cognitive radio architectures, namely, stand-alone single antenna, cooperative and multiple antennas, are proposed for spectrum sensing purposes. These architectures implement a relatively fast and reliable signal processing algorithm, based on a feature detection technique and support vector machines, for identifying the transmissions in a given environment. Such architectures are compared in terms of detection and classification performances for two transmission standards, IEEE 802.11a and IEEE 802.16e. A set of numerical simulations have been carried out in a challenging scenario, and the advantages and disadvantages of the proposed architectures are discussed.
Loading....